Asymptotic behavior of Structures made of Plates

نویسنده

  • G. Griso
چکیده

The aim of this work is to study the asymptotic behavior of a structure made of plates of thickness 2δ when δ→0. This study is carried on within the frame of linear elasticity by using the unfolding method. It is based on several decompositions of the structure displacements and on the passing to the limit in fixed domains. We begin with studying the displacements of a plate. We show that any displacement is the sum of an elementary displacement concerning the normal lines on the middle surface of the plate and a residual displacement linked to these normal lines deformations. An elementary displacement is linear with respect to the variable x3. It is written U(x̂)+R(x̂)∧x3"e3 where U is a displacement of the mid-surface of the plate. We show a priori estimates and convergence results when δ→0. We characterize the limits of the unfolded displacements of a plate as well as the limits of the unfolded of the strained tensor. Then we extend these results to the structures made of plates. We show that any displacement of a structure is the sum of an elementary displacement of each plate and of a residual displacement. The elementary displacements of the structure (e.d.p.s.) coincide with elementary rods displacements in the junctions. Any e.d.p.s. is given by two functions belonging to H(S;R) where S is the skeleton of the structure (the plates mid-surfaces set). One of these functions : U is the skeleton displacement. We show that U is the sum of an extensional displacement and of an inextensional one. The first one characterizes the membrane displacements and the second one is a rigid displacement in the direction of the plates and it characterizes the plates flexion. Eventually we pass to the limit as δ→0 in the linearized elasticity system, on the one hand we obtain a variational problem that is satisfied by the limit extensional displacement, and on the other hand, a variational problem satisfied by the limit of inextensional displacements. Résumé. Le but de ce travail est d’étudier le comportement asymptotique d’une structure formée de plaques d’épaisseur 2δ lorsque δ→0. Cette étude est menée dans le cadre de l’élasticité linéaire en utilisant la méthode de l’éclatement. Elle est basée sur plusieurs décompositions des déplacements de la structure, et sur le passage à la limite dans des domaines fixes. On commence par une étude des déplacements d’une plaque. On montre que tout déplacement d’une plaque est la somme d’un déplacement élémentaire concernant les normales à la surface moyenne de la plaque et d’un déplacement résiduel lié aux déformations de ces normales. Un déplacement élémentaire est affine par rapport à la variable x3, il s’́ecrit U(x̂)+R(x̂)∧x3"e3 où U est un déplacement de la surface moyenne de la plaque. On établit des estimations a priori et des résultats de convergence lorsque δ→0. On caractérise les limites des éclatés des déplacements d’une plaque, ainsi que les limites des éclatés du tenseur des déformations. On étend ensuite ces résultats aux structures formées de plaques. On montre que tout déplacement d’une structure est la somme d’un déplacement élémentaire de chaque plaque et d’un déplacement résiduel. Les déplacements élémentaires de la structure (d.e.s.p.) cöıncident avec des déplacements élémentaires de poutres dans les jonctions. Tout d.e.s.p. est donné par deux fonctions appartenant à H(S;R) où S est le squelette de la structure (l’ensemble des surfaces moyennes des plaques). L’une de ces fonctions : U est le déplacement du squelette. On montre que U est la somme d’un déplacement extensionnel et d’un déplacement inextensionnel. Le premier caractérise les déplacements membranaires des surfaces moyennes, le second est un déplacement rigide dans la direction des plaques; il caractérise la flexion des plaques. Pour finir on passe à la limite pour δ→0 dans le système de l’élasticité linéaire, on obtient d’une part un problème variationnel vérifié par la limite des déplacements extensionnels, et d’autre part un problème variationnel vérifié par la limite des déplacements inextensionnels. 1 ha l-0 06 20 22 0, v er si on 2 9 Se p 20 11 Author manuscript, published in "Analysis and Applications 3, 4 (2005) 325-356" DOI : 10.1142/S0219530505000613

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A concise review of nano-plates

Recent works done by nano-engineers and nano-sciences about mechanical behavior of nano-plates including bending, buckling and vibration response were reviewed. The authors used non-classical elasticity theories to explain these behaviors of plate structures. Some of them employed Hamilton’s principle along with stain gradient theory, nonlocal theory, surface theory and couple stress theory to ...

متن کامل

Bending Behavior of Sandwich Plates with Aggregated CNT-Reinforced Face Sheets

The main aim of this paper is to investigate bending behavior in sandwich plates with functionally graded carbon nanotube reinforced composite (FG-CNTRC) face sheets with considering the effects of carbon nanotube (CNT) aggregation. The sandwich plates are assumed resting on Winkler-Pasternak elastic foundation and a mesh-free method based on first order shear deformation theory (FSDT) is devel...

متن کامل

A Duality Theorem for Plastic Plates

Limit analysis studies the asymptotic behavior of elastic-plastic materials and structures. The asymptotic material properties exist for a class of ductile metals and are designed into optimal structural members such as I-beams and composite plates. The analysis automatically ignores the relatively small elastic deformations. Classical lower and upper bound theorems in the form of inequalities ...

متن کامل

Numerical and Experimental Study of Buckling of Rectangular Steel Plates with a Cutout

Steel plates are used in various structures, such as the structures of the deck and body of ships, bridges, and aerospace industry. In this study, we investigate the buckling and post-buckling behavior of rectangular steel plates having circular cutouts with two boundary conditions: first, clamped supports at upper and lower ends and free supports at other edges; second, clamped supports at upp...

متن کامل

Low-speed impact behavior of two-layer similar and dissimilar metal laminate structures

Mechanical behavior of two-layer metal laminate structures under low-speed impact loading was investigated experimentally and numerically. The experimental results were just used for validation of numerical results. Then numerical modeling was used to study the behavior of metal laminates in details. The mechanical behavior of the metal laminate structures under impact loading was found to be d...

متن کامل

A Comparison Study on Various Finite Element Models of Riveted Lap Joint by the Use of Dynamic Model Updating

Till now, various models have been proposed in literature to simulate the behavior of riveted structures. In order to find the most accurate analytical method in modeling the dynamic behavior of riveted structures, a comparison study is performed on several of these models, in this research. For this purpose, experimental modal analysis tests are conducted on a riveted plate to verify the effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003